

p5-5

p₂-8

p5-2

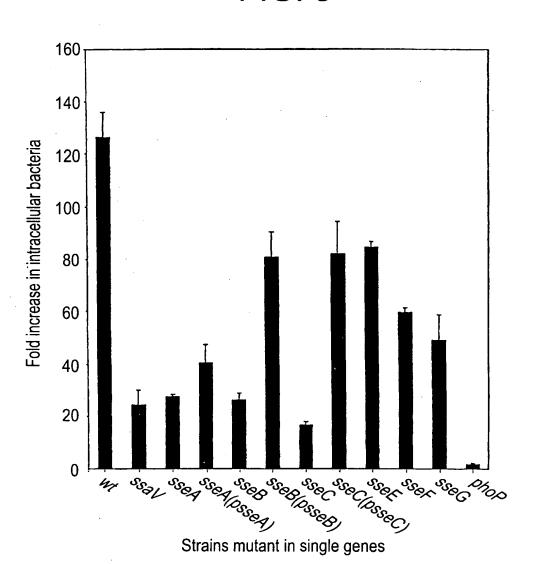
p54

FIG. 2A

?

Alignment of SseB to EspA

Sseb 1 MSSGN-1 LWGSQNP IVFKNSFGVSNADTGSQDDLSQQNPFAEGYGVL 46	Sieb 47 LILLMVIQAIANNKFIEVOKNAERARNTQEKSNEMDEVIAKAAKG-DAKT 95	*B % KEEVPEDVIKYMRDNGILIDGMTIDD YMAKYGDHGKLDKGGLQAIKAA H3	68 144 LDNDANRNTDLMSQGQIITIQKMSQELNAVLTQLTGLISKWGEISSMIAQK 193
Espa 1 MDTSTTASVASANASTSTSMAYDLGSMSKDD-V 1 DLFNKLGVFQAA1 LMF 49	Espa 30 AYMY GAQSDLSIAK FAD MNEASKESTTA QKMANLVDAKIAD VQSSSDKNA 99		19A 142 IISAKANNLTTTVNNSQLEIQQMSNTLNLLTSARSDMQSLQYRTISGISLG 191
S.	S.	Sse B	SseB
E.	E.	Esp A	EspA


T Y S 196 K 192

192

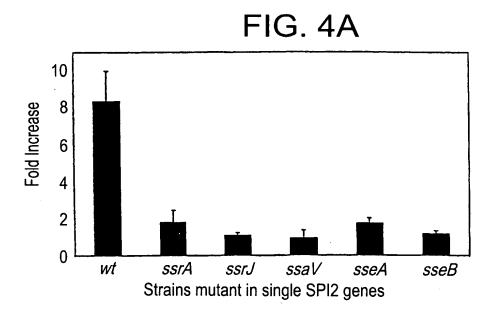
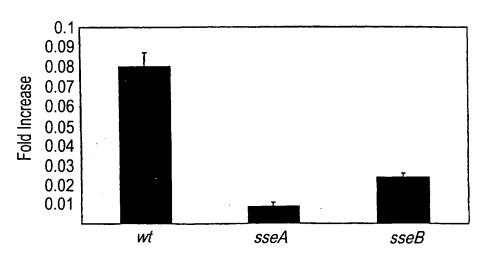

SseB Esp.A

		FIG. 2B
		Alignment of SseC to EspD, YopB and PepB
SwC Exp0 Yep8		I MIN R I H S N S D S A A G · · · V T A L T H H H L I S N V S C V S S G S L L G K R Q H R V N S T F G D G N A A C L L L I S G K · · · M I N V N N D I Q S V V S G A S A A T A T S G I N Q S E V T S A L D L Q L V K S T A S S A S W T E S T A L L A P P A G H 60 I N N N N D V S S G G V Q L L P P A G H 60 I N N N D V S S G G V Q L L P P P A G H 60 I N D K N G G V S S G G V Q L L P P P · · · S I N P L I T L E R A G L P V G V A D A G G P A L D R P V A R D V E S L R P K A P P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A A P A
Sec. Espb VepB	222	7
Sec Espb VepB	• 2 = =	' [MT]S[L] I LN[V]F GN]N A Q S L C Q Q[L E R] A TE VQ NA L R NK Q YKE YQE Q I Q[K]A] IEGO E DK A R K A G I F G A 134 A] TLL LS L D A S A Q R N A S MK N S NJE I Y A D G Q NK A L D NJK T LE F K K Q L [E E Q] Q K A E E K A Q K S [K] I V G [Q] 189 L [G K L V S N [L] E E Y R K D I K I A D I Q R L II [E] Q N N A A MK K T I E E N Q E K I K E T E E N A K [Q] V K K S G M A S K I 189 L L A K I T G E V E N Q Q K K L K L T E I E Q A R K • Q N · · · L Q K M E D N Q Q K I R E S E E A A K E A Q K S G L A A K 199
Sac EpD VepB	E = 3 E	[F D W T T T T T T T T T
Sec EspD VepB	####	TC OA I I I D V T S K I O F I G C E A VALAL DIVIE Q I G RAFIMATIR G L S G A A AAK VILD S G F I G E E V V E R M V G 276 - A P I O A B A C C C C C C C C C C C C C C C C C
Sec Epp Vip B	E	GAEFSAKVAQISTGISHTYOSAVTKLGOSKFOSESFSKOFEPLERE(MÄ)MANE(MÄAEEAAA) GAEFSAKVAQISTGISHTVOSAVTKLGOSKFOSLT
Sec EpD VepB PepB	8 8 5 8	E F[S]R N[V]E[N N M T R S A]G K S F] T KEG V K A MÅJKE A A K E[Å] L E K[Č V Ö]E G G K F[L L] K[K] FJN K [V] L F N M F K 37% N D A A Y Y[M V] L S Q[V]S - A L E L O N O A N 344 O V O V O V O V O S S G I T O T [I N N K K Q A D L Q H N N A D L A L N K A D MA A L Q S · I T D M L K E E L IS H · · · · 344 O V O V A V N N N O V O V O V O V O V O V O V O V
Sect End Vep8	8 5 5 5	KILYALLRDCS FKG[LQA] IR]CAT[E]GAS QMNTG[MVNT]E KAK[I]E KKIE QLITQQRFLDF435


FIG. 3

5/31

Strains mutant in single SPI2 genes

FIG. 5

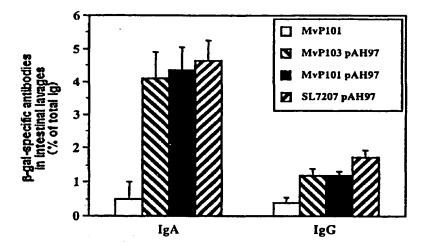


FIG. 6

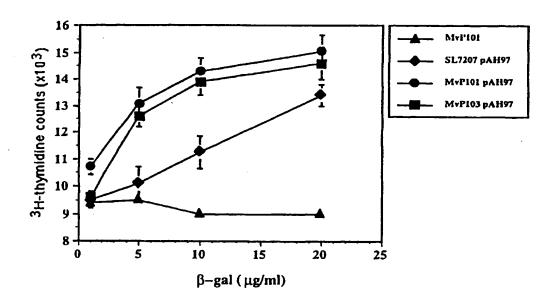


FIG. 7

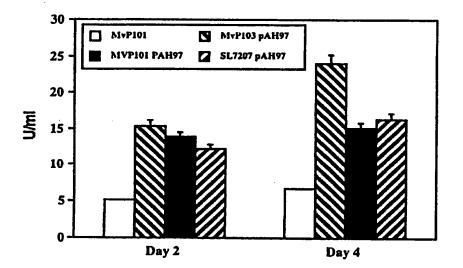
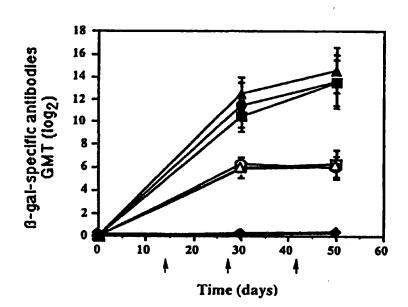
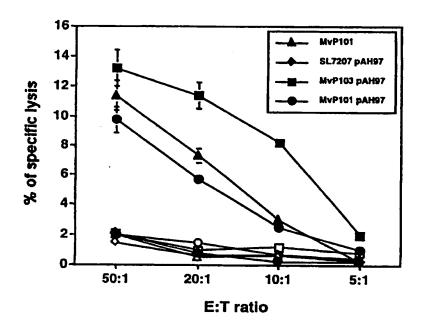
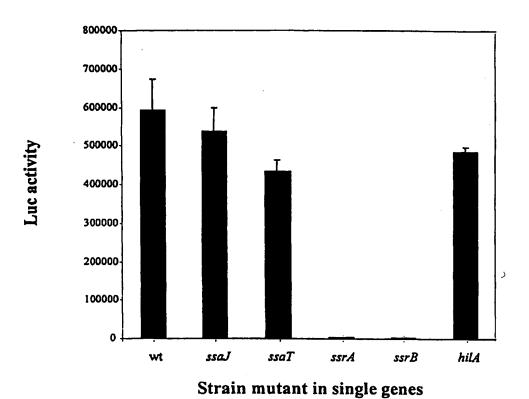
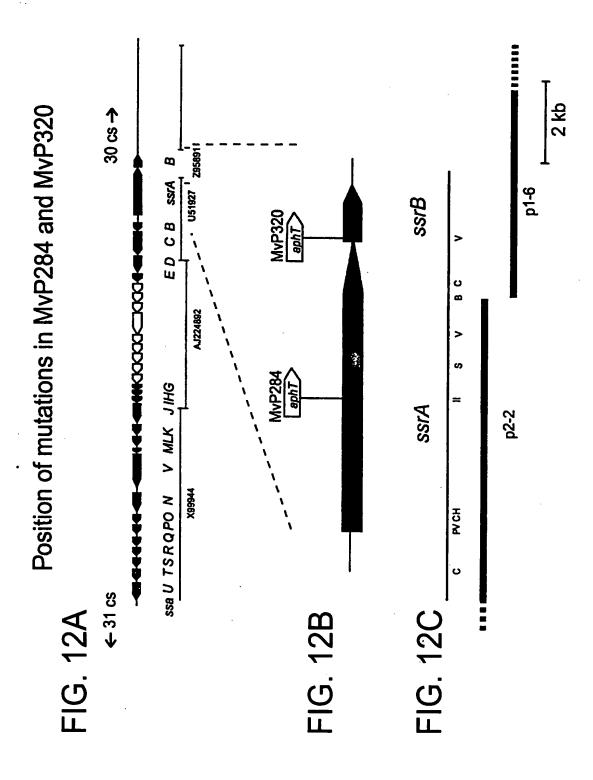
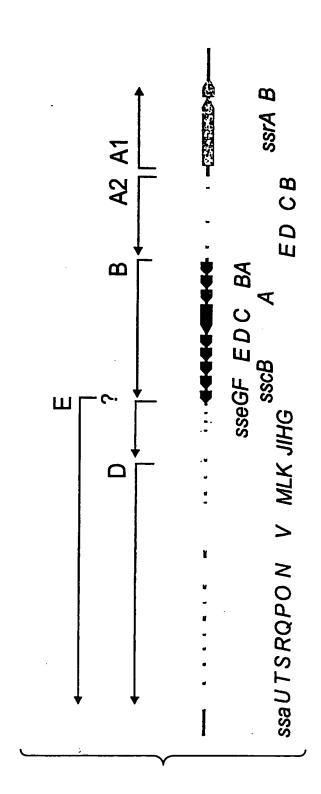



FIG. 8

FIG. 9

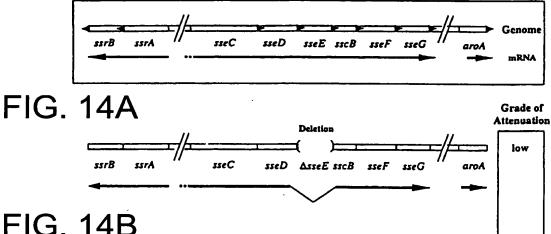
FIG. 10

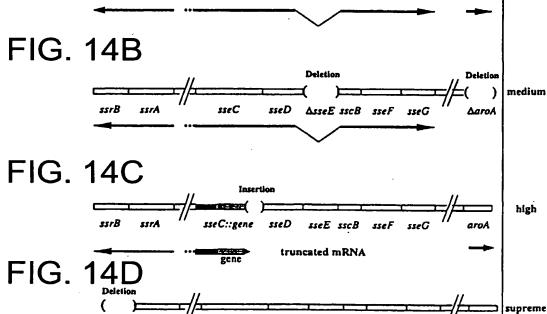





FIG. 11

13/31

Model for the transcriptional units for SPI2 virulence genes FIG. 13




FIG. 14

Δssr8

Principle of Attenuation

Schematic Instruction for the Generation of Different Mutations with Increasing Grade of Attenuation

sseD

no mRNA

sseE sscB sseF

sseG

aroA

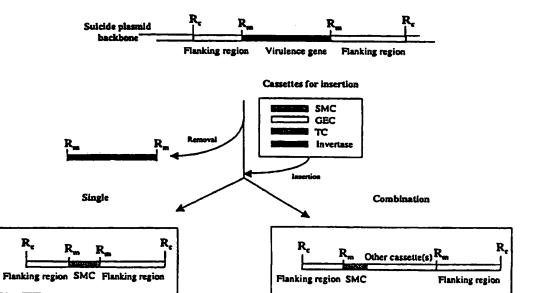
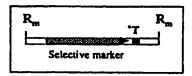

sseC

FIG. 15

Principle of insertional mutation

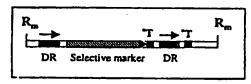
 R_{e} Restriction sites for cloning of virulence gene cluster fragment R_{m} Restriction sites for gene mutation

Mutated virulence gene cassette



Mutated virulence gene cassette

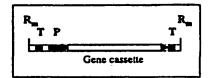
FIG. 16


Selective Marker Cassette (SMC)

Permanent selective marker cassette

T = Optional transcriptional terminator if polar insertional mutation is required

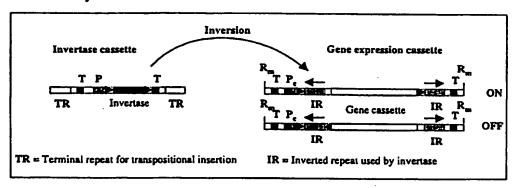
Revertible selective marker cassette



DR= direct repeat

FIG. 17

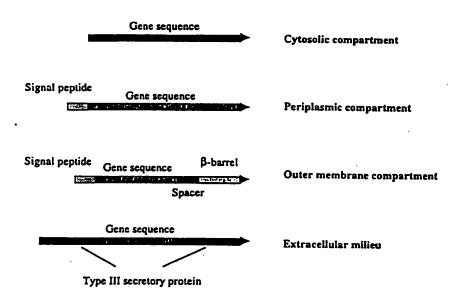
Gene Expression Cassette (GEC)


One Phase System

- P = Promoter consisting of either a
 - promoter acting constitutively in Salmonella
 - a Salmonella in vivo inducible promoter or
 - an other promoter

T = Transcriptional terminator

Two Phase System


Gene cassette:

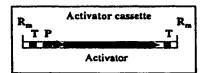
Single gene expression unit

Concatemeric gene expression units

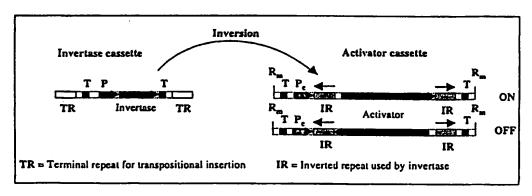
FIG. 18

Structural requirements of the gene expression unit for the delivery of heterologous antigens into the various Salmonella compartments

FIG. 19


Transactivator Cassette (TC)

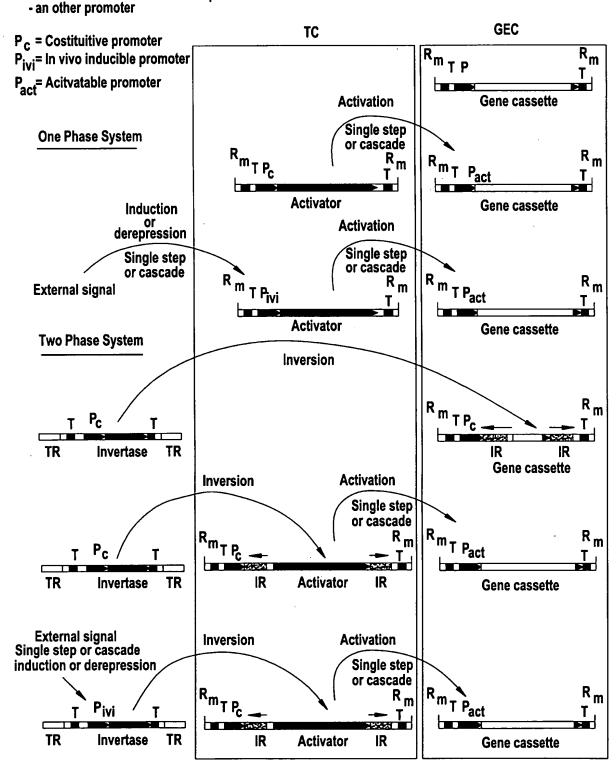
P = Promoter consisting of either a


- promoter acting constitutively in Salmonella
- a Salmonella in vivo inducible promoter or
- an other promoter

P_c = Constitutive promoter

One Phase System

Two Phase System



^{21/31} FIG. 20

P = Promoter consisting of either a

- promoter acting constitutively in Salmonella
- a Salmonella in vivo inducible promoter or

Modes of Gene Expression

"Attenuated Salmonella SP12 Mutants as Antigen Carriers" By: Michael Hensel, et al. Divisional of U.S.S.N. 09/763,620, filed January 23, 2004 Atty. Docket No. ICI 104 DIV

22/31

FIG. 21A

CTGCAGTTGTCCGGTTATTGCTCGTCAAGCGAACAGATGCAAAAGGTGAGAGCGACTCTCGAATCATGGGGGGTCATGTA TCGGGATGGTGTAATCTGTGATGACTTATTGGTACGAGAAGTGCAGGATGTTTTGATAAAAATGGGTTACCCGCATGCTG AAGTATCCAGCGAAGGGCCGGGGAGCGTGTTAATTCATGATGATATACAAATGGATCAGCAATGGCGCAAGGTTCAACCA TTACTTGCAGATATTCCCGGGTTATTGCACTGGCAGATTAGTCACTCTCATCAGTCTCAGGGGGATGATATTATTTCTGC GATAATAGAGAACGGTTTAGTGGGGCTTGTCAATGTTAGCCCAATGCGGCGCTCTTTTGTTATCAGTGGTGTACTGGATG ATTGCGCCTTCCCATGATGAAAGCAAGTATCTGCCTGCGCCAGTGGCTTGTTACAGAGTCGCCATGGTAATTACTT ATTACTGACGAATAAAGAGCGTTTACGTGTAGGGGCATTGTTACCCAATGGGGGAGAAATTGTCCATCTGAGTGCCGATG GTTAGAAGATTTGCTGCTTCATTCGCGTGAAGAGGCCAAAGGCATAATTTTACAATTAAGGGCTGCCCGGAAACAGTTAG AAGAGAACAACGGCAAGTTACAGGATCCGCAGCAATATCAGCAAAACACCTTATTGCTTGAAGCGATCGAGCAGGCCGAA AGAGCCTATCCCACCAGGCGTTAATTGGCGCAGCCAGTTTGGACACGGATAGCGCCCAAAAACCGCAGCGTACACGTAGT ACGTGAGGTTTGACTCGCTACGCTCGCCCTTCGGGCCGCCGCTAGCGGGGTTCAAAACGCTAACGCGTTTTGGCGAGCAC GGAGGGGAATGATAAAGAAAAAGGCTGCGTTTAGTGAATATCGTGATTTAGAGCAAAGTTACATGCAGCTAAATCAC TGTCTTAAAAATTTCACCAAATCCGGGCTAAGGTGAGTCAACAGCTTGCTGAAAGGGCAGAGAGCCCCAAAAATAGCAG AGAGACAGAGAGTATTCTTCATAACCTATTTCCACAAGGCGTTGCCGGGGTTAACCAGGAGGCCGAGAAGGATTTAAAGA AAATAGTAAGTTTGTTTAAACAACTTGAAGTACGACTGAAACAACTTAATGCTCAAGCCCCGGTGGAGATACCGTCAGGA **AAAACAAAAAGGTAAAGCATAATGTCTTCAGGAAACATCTTATGGGGAAGTCAAAACCCTATTGTGTTTTAAAAATAGCTT** CGGCGTCAGCAACGCTGATACCGGGAGCCAGGATGACTTATCCCAGCAAAATCCGTTTGCCGAAGGGTATGGTGTTTTGC TTATTCTCCTTATGGTTATTCAGGCTATCGCAAATAATAATTTATTGAAGTCCAGAAGARCGCTGAACGTGCCAGAAAT ACCCAGGAAAAGTCAAATGAGATGAGTGATTGATTGCTAAAGCAGCCAAAGGGGGATGCTAAAACCAAAGAGGGGATGCC TGAGGATGTAATTAAATACATGCGTGATAATGGTATTCTCATCGATGGTATGACCATTGATGATTATATGGCTAAATATG GCGATCATGGGAAGCTGGATAAAGGTGGCCTACAGGCGATCAAAGCGGCTTTGGATAATGACGCCAACCGGAATACCGTA CTTATGAGTCAGGGGCAGATAACAATTCAAAAAATGTCTCAGGAGCTTAACGCTGTCCTTACCCAACTGACAGGGCTTAT CAGTAAGTGGGGGAAATTTCCAGTATGATAGCGCAGAAAACGTACTCATGAAAAAAGACCCGACCCTACAACAGGCACA TGACACGATGCGGTTTTTCCGGCGTGGCGGCTCGCTGCGTATGTTGTTGGATGACGATGTTACACAGCCGCTTAATACTC TGTATCGCTATGCCACGCAGCTTATGGAGGTAAAAGAATTCGCCGGCGCACGCGCGACTTTTTCAATTGCTGACGATATAT GATGCCTGGTCATTTGACTACTGGTTTCGGTTAGGGGAATGCTGCCAGGCTCAAAAACATTGGGGGGAAGCGATATACGC TTATGGACGCGCACAAATTAAGATTGATGCGCCGCAGGCGCCATGGGCCGCAGCGGAATGCTATCTCGCGTGTGATA ACGTCTGTTATGCAATCAAAGCGTTAAAGGCCGTGGTGCGTATTTGCGGCGAGGTCAGTGAACATCAAATTCTCCGACAG CGTGCAGAAAAGATGTTACAGCAACTTTCTGACAGGAGCTAAAAATGAATCGAATTCACAGTAATAGCGACAGCGCCGCA GGAGTARCCGCCTTARCACATCACCATAGCAATGTCAGTTGCGTTTCCTCGGGTTCGCTGGGAAAGCGCCAGCATCG TGAAGCAACTGCTTGATGCCGTACCCGGAAATCATAAGCGTCCATCATTGCCTGACTTTTTTGCAGACCAATCCCGCGGTT TTATCAATGATGATGACGTCATTAATACTCAACGTCTTTGGTAATAACGCTCAATCGTTATGCCAACAGCTTGAGCGGGC AACTGAGGTGCAAAATGCATTACGTAATAAGCAGGTAAAGGAGTATCAGGAGCAGATCCAGAAAGCGATAGAGCAGGAGG ATAAAGCGCGTAAAGCGGGTATTTTTGGCGCTATTTTTGACTGGATTACCGGCATATTTGAAACCGTGATTGGCGCCTTA AAAGTTGTGGAAGGTTTTCTGTCCGGAAATCCCGCAGAAATGGCTAGCGGCGTAGCTTATATGGCCGCAGGTTGTGCAGG AATGGTTAAAGCCGGAGCCGAAACGGCAATGATGTGCGGTGCTGACCACGATACCTGTCAGGCAATTATTGACGTGACAA GTAAGATTCAATTTGGTTGTGAAGCCGTCGCGCTGGCACTGGATGTTTTCCAGATTGGCCGTGCTTTTATGGCGACGAGA GGTTTATCTGGCGCAGCTGCAAAAGTGCTTGACTCCGGTTTTGGCGAGGAAGTGGTTGAGCGTATGGTAGGTGCAGGGGA AGCAGAAATAGAGGAGTTGGCTGAAAAGTTTGGCGAAGAAGTGAGCGAAAGTTTTTCCAAACAATTTGAGCCGCTTGAAC GTGAAATGGCTATGGCGAATGAGATGGCAGAGGGCTGCCGAGTTTTCTCGTAACGAAAAAAATAATATGACGCGAAGC GCGGGAAAAAGCTTTACGAAAGAGGGGGTGAAAGCCATGGCAAAAGAAGCGGCAAAAGAAGCCCTGGAAAAATGTGTGCA <u>AGAAGGTGGAAAGTTCCTGTTAAAAAATTCCGTAATAAAGTTCTCTTCAATATGTTCAAAAAAATCCTGTATGCCTTAC</u> TGAGGGATTGTTCATTTAAAGGCTTACAGGCTATCAGATGTGCAACCGAGGGCGCCAGTCAGATGAATACTGGCATGGTT **AACACAGAAAAAGCGAAGATCGAAAAGAAAATAGAGCAATTAATAACTCAGCAACGGTTTCTGGATTTCATAATGCAACA** AACAGAAAACCAGAAAAAGATAGAACAAAAACGCTTAGAGGAGCTTTATAAGGGGACGGGTGCCGCGCTTAGAGATGTAT TAGATACCATTGATCACTATAGTAGCGTTCAGGCGAGAATAGCTGGCTTATCGCGCTTAATCTGAGGATAAAAATATGGAA GGGTACTGAATGCTTCTGTTATTTGATGATATCTGGATGAAGCTAATGGAGCTTGCCCAAAAAGCTGCGCGATATCA TGCGCAGCTATAACGTAGAAAAACAACGGCTGGCCTGGGAACTGCAAGTCAATGTTTTACAGACGCAAATGAAAACAATT Gatgaagcgtttagagcatcaatgattactgcgggtggcgcaatgttgtcgggtgtactgacgataggattaggggccgt

FIG. 21A-1

AGGCGGGGAAACCGGTCTTATAGCGGGTCAAGCCGTAGGCCACACAGCTGGGGGCGTCATGGGGCCTGGGGGCTGTAG CGCAACGTCAAAGTGATCAAGATAAAGCGATTGCCGACCTGCAACAAAATGGGGCCCAATCTTATAATAAATCCCTGACG GAAATTATGGAGAAAGCAACTGAAATTATGCAGCAAATCATCGGCGTGGGGTCGTCACTGGTCACGGTTCTTGCTGAAAT ACTCCGGGCATTAACGAGGTAAACATGGTGCAAGAAATAGAGCAATGGTTACGTCGGCATCAGGTGTTTACTGAGCCTGC ATATTTAGGGGAGACCGCCATATTACTTGGGCAGCAGTTTATATTATCGCCTTACCTGGTGATCTATCGTATTGAGGCAA AAGAAATGATTATTTGTGAGTTCAGGCGCCTGACGCCCGGGCAACCTCGACCACAGCAATTGTTTCACTTACTGGGACTT TTACGCGGGATATTTGTGCATCACCCGCAGTTAACATGTTTAAAGATGTTGATAATCACCGACGTTCTGGATGAAAAAAA AGCCATGCTACGCAGGAAATTATTGCGCATCCTGACAGTAATGGGAGCGACCTTTACACAGCTTGATGGCGATAACTGGA CAGTTTTATCCGCCGAGCATCTTATCCAGCGACGTTTTTAAATGACCTTCCTGACGTAAATCATTATCACGTGAAAATAA CAATCAATAGGTATGATGAAGAAGAAGATCAGAAAAATAAAATACCCGAAGACATTCTGAAACAGCTATTATCCGTTGA **AATGATGGGGGAACCCGGGTTGGCGAGAGAGGGTTTTCAAACCGCAATCAAGATGAGTTATGCGGATGCCTCATGGAGTG** AGATTCGCCAGAATGCGCAAATAATGGTTGATACTCTTATTGCTTAAATAACAGAACGAAATATGAAAATTCATATTCCG TCAGCGGCAAGTAATATAGTCGATGGTAATAGTCCTCCTTCCGATATACAAGCGAAGGAGGTATCGTTTCCTCCCCCTQA AATTCCAGCGCCTGGCACCCCGCAGCCCCTGTGCTTACGCCTGAACAAAAAGGCAGCAGAGAGGGATTATGCGATAC ATTTTATGCAATACACTATTCGTGCGCTGGGTGCGACAGTCGTGTTTGGGTTATCGGTTGCTGCAGCGGTAATTTCTGGC TTATCAATCGATATGTCAGCAAAAGGAGCCATTACAAACCGCCAGTGATAGCGTTGCTCTTGTGGTCAGTGCGCTGGCCT TCTATGTTGGTTTTACCCCTACAGTTTCCACTGCCCGCGGCTGAAAATATTGCGGCCTCTTTGGACATGGGGAGTGTAAT CTGTTGATGAACTTCATGCCGATCCCAGTGTGTTATTGGCGGAACAAATGGCAGCGCTCTGTCAATCTGCTACTACACCT GCACCTGCATTAATGGACAGTTCTGATCATACATCTCGGGGGAGAACCATGAAACCTGTTAGCCCAAATGCTCAGGTAGGA GGGCAACGTCCTGTTAACGCGCCTGAGGAATCACCTCCATGTCCTTCATTGCCACATCCGGAAACCAATATGGAGAGTGG TAGAATAGGACCTCAACAAGGAAAAGAGCGGGTATTGGCCGGACTTGCGAAACGAGTGATAGAGTGTTTTCCAAAAGAAA TTTTTAGTTGGCAAACGGTTATTTTGGGCGGACAGATTTTATGCTGTTCCGCTGGAATAGCATTAACAGTGCTAAGTGGT GGAGGCGCGCCGCTCGTAGCCCTGGCAGGGATTGGCCTTGCTATTGCCATCGCGGATGTCGCCTGTCTTATCTACCATCA TAAACATCATTTGCCTATGGCTCACGACAGTATAGGCAATGCCGTTTTTTATATTGCTAATTGTTTCGCCAATCAACGCA AGTGGTAGTTTGGGACTACAGCCTCATTTATTAGAGCGTCTTAATGATATTACCTATGGACTAATGAGTTTTACTCGCTT CGGTATGGATGGCAATGACCGGTATGCAGGTCAGCAGCCCATTATATCGTTTGCTGGCTCAGGTAACGCCAGAAC AACGTGCGCCGGAGTAATCGTTTTCAGGTATATACCGGATGTTCATTGCTTTCTAAATTTTTGCTATGTTGCCAGTATCCT TACGATGTATTTTAAGGAAAAGCATTATGGATATTGCACAATTAGTGGATATGCTCTCCCACATGGCGCACCAGGC AGGCCAGGCCATTAATGACAAAATGAATGGTAATGATTTGCTCAACCCAGAATCGATGATTAAAGCGCAAATTTGCCTTAC AGCAGTATTCTACATTTATTAATTACGAAAGTTCACTGATCAAAATGATCAAGGATATGCTTAGTGGAATCATTGCTAAA ATCTGAAGTTATTAGCGACGATGTTCGACGGTTGCTGCTGGAAATCATGTTTGCGGGCGTTAACCATAGCCTGATTTCCC AGGTACATGCGATGTTACCAGCGCTAACGGTTATTGTTCCGGATAAAAATTACAGTTGGTATGTCTGGCATTATTGTTG GCGGGTTTAAATGAGCCGCTAAAAGCCGCGAAAATTTTATCGGATATAGATTTGCCAGAGGCTATGGCGCTGCGTCTGTT ATTTCCTGCACCAAATGAGGGGTTTGAAAATTGAATATTTCTGATATGAGCGTAGTGCCTGTAAGCACTCAATCTTATGT **AAAGTCCTCTGCAGAACCGAGCCAGGAGCAAATTAATTTTTTTGAACAATTGCTGAAAGATGAAGCATCCACCAGTAACG** CCAGTGCTTTATTACCGCAGGTTATGTTGACCAGACAAATGGATTATATGCAGTTAACGGTAGGCGTCGATTATCTTGCC AGAATATCAGGCGCAGCATCGCAAGCGCTTAATAAGCTGGATAACATGGCATGAAGGTTCATCGTATAGTATTTCTTACT GTCCTTACGTTCTTTCTTACGGCATGTGATGTGGATCTTTATCGCTCATTGCCAGAAGATGAAGCGAATCAAATGCTGGC **ATTACTTATGCAGCATCATATTGATGCGGAAAAAAACAGGAAGAGGATGGTGTAACCTTACGTGTCGAGCAGTCGCAGT** TTATTAATGCGGTTGAGCTTAGACTTAACGGTTATCCGCATAGGCAGTTTACAACGGCGGATAAGATGTTTCCGGCT **AATCAGTTAGTGGTATCACCCCAGGAAGAACAGCAGAAGATTAATTTTTTAAAAGAACAAAGAATTGAAGGAATGCTGAG** TCAGATGGAGGGCGTGATTAATGCAAAAGTGACCATTGCGCTACCGACTTATGATGAGGGAAGTAACGCTTCTCCGAGCT CAGTTGCCGTATTTATAAAATATTCACCTCAGGTCAATATGGAGGCCTTTCGGGTAAAAATTAAAGATTTAATAGAGATG TCAATCCCTGGGTTGCAATACAGTAAGATTAGTATCTTGATGCAGCCTGCTGAATTC

FIG. 21B

AAAAAGTAATTGTAGTCATCGACTGGGTTATATATGAAGAAATTTATCTTCCTAATGATAACACCATCGATTAATCTTCT GATGAAACTATATGTACTGCGATAGTGATCAAGTGCCAAAGATTTTGCAACAGGCAACTGGAGGGAAGCATTATGAATTT GGCTGCTATCTGTGCTTACCGCAGCTTATATATCAATGGTTCAGAAACGGCAGCATATAATAGAGGATTTATCCGTTCTA TCCGAGATGAATATTGTACTAAGCAATCAACGGTTTGAAGAAGCTGAACGTGACGCTAAAAATTTAATGTATCAATGCTC CGACGCTAAACGGAGAGAAGCACCGTCTCTTCTGCAGTCCTCTGATATCGATGAAAATAGCTTTCGTCGCGATAGTTTT ATTCTTAATCATAAAAATGAGATTTCGTTATTATCTACTGATAACCCTTCAGATTATTCAACTCTACAGCCTTTAACGCG AAAAAGCTTTCCTTTATACCCAACCCATGCCGGGTTTTACTGGAGTGAACCAGAATACATAAACGGCAAAAGGATGGCACG CTTCCGTTGCGGTTGCCGATCAGCAAGGCGTATTTTTTGAGGTGACGGTTAAACTTCCCGATCTCATTACTAAGAGCCAC CTGCCATTAGATGATAGTATTCGAGTATGGCTGGATCAAAACAACCACTTATTGCCGTTTTCATACATCCCGCAAAAAAA ACGTACACGTTAGAAAATGTAACGCTGCATGATGGATGGCAGCAAATTCCCGGATTTCTGATATTACGCACAACCTTGC ATGGCCCGGATGGAGTCTGGTTACGCTGTACCCATACGGTAATCTACATAATCGCATCTTAAAAATTATCCTTCAACAA ATCCCCTTTACATTAACAGCATTGGTGTTGATGACGTCGGCTTTTTTGCTGGTTACTACATCGCTCACTGGCCAAACCGTT ATGGCGTTTTGTCGATGTCATTAATAAACCGCAACTGCACCGCTGAGCACACGTTTACCAGCACAACGACTGGATGAAT TAGATAGTATTGCCGGTGCTTTTAACCAACTGCTTGATACTCTACAAGTCCAATACGACAATCTGGAAAACAAAGTCGCA **AAGTCATGAGTTACGTACTCCGATGAATGGCGTACTCGGTGCAATTGAATTACTACAAACCACCCCTTTAAACATAGAGC AACAAGGATTAGCTGATACCGCCAGAAATTGTACACTGTCTTTGTTAGCTATTATTAATAATCTGCTGGATTTTTCACGC** ATCGAGTCTGGTCATTTCACATTACATATGGAAGAAACAGCGTTACTGCCGTTACTGGACCAGGCAATGCAAACCATCCA GGGGCCAGCGCAAAAAACTGTCATTACGTACTTTTGTCGGTCAACATGTCCCTCTCTATTTTCATACCGACAGTA TCCGTTTACGGCAAATTTTGGTTAATTTACTCGGGAACGCGGTAAAATTTACCGAAACCGGAGGGATACGTCTGACGGTC AAGCGTCATGAGGAACAATTAATATTTCTGGTTAGCGATAGCGGTAAAGGGATTGAAATACAGCAGCAGTCTCAAATCTT TGGGCGGTAATCTGACACTAAAAAGTGTCCCCGGGGTTGGAACCTGTGTCTCGCTAGTATTACCCTTACAAGAATACCAG ACCACCCACCAGCAAAATGCGCTTCTCAACGCAGAGCTTTTGTATTTCTCCGGAAAACTCTACGACCTGGCGCAACAGT TAATATTGTGTACACCAAATATGCCAGTAATAAATAATTTGTTACCACCCTGGCAGTTGCAGATTCTTTTGGTTGATGAT GCCGATATTAATCGGGATATCATCGGCAAAATGCTTGTCAGCCTGGGCCAACACGTCACTATTGCCGCCAGTAGTAACGA GGCTCTGACTTTATCACAACAGCAGCGATTCGATTTAGTACTGATTGACATTAGAATGCCAGAAATAGATGGTATTGAAT GTGTACGATTATGGCATGATGAGCCGAATAATTTAGATCCTGATGTTTTGTGGCACTATCCGCTAGCGTAGCGACA GAAGATATTCATCGTTGTAAAAAAATGGGATTCATCATTACATTACAAAACCAGTGACATTGGCTACCTTAGCTCGCTA CATCAGTATTGCCGCAGAATACCAACTTTTACGAAATATAGAGCTACAGGAGCAGGATCCGAGTCGCTGCTCAGCGCTAC TGGCGACAGATGATATGGTCATTAATAGCAAGATTTTCCAATCACTGGACCTCTTGCTGGTGATATTGAAAATGCCGTA CTATGTCATAGACATTGAGAATCGCGTAAAAATGGGGAAAATCATCGCGCTGGAGGAACTAACCGACTTACGCCAGAAAA **ATCTTATTAGTAGACGATCATGAAATCATCATTAACGGCATTATGAATGCCTTATTACCCTGGCCTCATTTTAAAATTGT** AGAGCATGTTAAAAATGGTCTTGAGGTTTATAATGCCTGTTGTGCATACGAGCCTGACATACTTATCCTTGATCTTAGTC TACCTGGCATCAATGGCCTGGATATCATTCCTCAATTACATCAGCGTTGGCCAGCAATGAATATTCTGGTTTACACAGCA TACCARCARGAGTATATGACCATTAAAACTTTAGCCGCAGGTGCTAATGGCTATGTTTTAAAAAGCAGTAGTCAGCAAGT TCTGTTAGCGGCATTGCAAACAGTAGCAGTAAACAAGCGTTACATTGACCCAACGTTGAATCGGGAAGCTATCCTGGCTG AATTAAACGCTGACACCAATCATCAACTGCTTACTTTGCGCGAGCGTCAGGTTCTTAAACTTATTGACGAGGGGTAT ACCARTCATGGGATCAGCGAAAAGCTACATATCAGTATAAAAACCGTCGAAACACACCGGATGAATATGATGAGAAAGCT ACAGGTTCATAAAGTGACAGAGTTACTTAACTGTGCCCGAAGAATGAGGTTAATAGAGTATTAACCAGGGGGCGTCCGATG GTATTAAGCATTGGTCATATTTTGATGAGCCTTACGCCACGCAGTATTGCTCATCATCGACAAAATCCATACGGATGCCC TGGTATGCCGCACCATTTATCACTACCTTAGTCTTCATTTGATCATGATATGTAGAATCCCCTTATTTAACGGGCTTTA CCATGTCGTATTCTATCGGCGAATTTGCCAGACTATGCGGTATCAATGCCGCCACGCTAAGGGCATGGCAGCGACGCTAT

FIG. 22A

sseA

ATGATGATAAAGAAAAAGGCTGCGTTTAGTGAATATCGTGATTTAGAGCAAAGTTACATGCAGCTAAATCACTGTCTTAA
AAAATTTCACCAAATCCGGGCTAAGGTGAGTCAACAGCTTGCTGAAAAGGGGCAGAGAGCCCCCAAAAATAGCAGAGAGCAG
AGAGTATTCTTCATAACCTATTTCCACAAGGCGTTGCCGGGGTTAACCAGGAGGCCCGAGAAGGATTTAAAGAAAATAGTA
AGTTTGTTTAAACAACTTGAAGTACGACTGAAACAACTTAATGCTCAAGCCCCGGTGGAGATACCGTCAGGAAAAACAAA
AAGGTAA

FIG. 22B

sseB

ATGTCTTCAGGAAACATCTTATGGGGAAGTCAAAACCCTATTGTGTTTAAAAATAGCTTCGGCGTCAGCAACGCTGATAC
CGGGAGCCAGGATGACTTATCCCAGCAAAATCCGTTTGCCGAAGGGTATGGTGTTTTTGCTTATTCTCCTTATGGTTATTC
AGGCTATCGCAAATAATAAATTTATTGAAGTCCAGAAGAACGCTGAACGTGCCAGAAATACCCAGGAAAAGTCAAATGAG
ATGGATGAGGTGATTGCTAAAGCAGCCAAAGGGGATGCTAAAACCAAAGAGGAGGTGCCTGAGGATGAATTAAATACAT
GCGTGATAATGGTATTCTCATCGATGGTATGACCATTGATGATTATATGGCTAAATATGGCGATCATGGGAAGCTGGATA
AAGGTGGCCTACAGGCGATCAAAGCGGCTTTGGATAATGACGCCAACCGGAATACCGATCTTATGAGTCAGGGGCAGATA
ACAATTCAAAAAATGTCTCAGGAGCTTAACGCTGTCCTTACCCAACTGACAGGGCTTATCAGTAAGTGGGGGGGAAATTTC
CAGTATGATAGCGCAGAAAACGTACTCATGA

FIG. 22C

sseC

ATGAATCGAATTCACAGTAATAGCGACAGCGCCGCAGGAGTAACCGCCTTAACACATCATCACTTAAGCAATGTCAGTTG CGTTTCCTCGGGTTCGCTGGGAAAGCGCCAGCATCGTGTGAATTCTACTTTTGGCGATGGCAACGCCGCGTGTCTGCTAT CCGGGAAAATTAGTCTTCAGGAGGCAAGCAATGCGTTGAAGCAACTGCTTGATGCCGTACCCGGAAATCATAAGCGTCCA TCATTGCCTGACTTTTTGCAGACCAATCCCGCGGTTTTATCAATGATGATGACGTCATTAATACTCAACGTCTTTGGTAA TAACGCTCAATCGTTATGCCAACAGCTTGAGCGGGCAACTGAGGTGCAAAATGCATTACGTAATAAGCAGGTAAAGGAGT ATCAGGAGCAGATCCAGAAAGCGATAGAGCAGGAGGATAAAGCGCGTAAAGCGGGTATTTTTTGGCGCTATTTTTGACTGG ATTACCGGCATATTTGAAACCGTGATTGGCGCCTTAAAAGTTGTGGAAGGTTTTCTGTCCGGAAATCCCGCAGAAATGGC TAGCGGCGTAGCTTATATGGCCGCAGGTTGTGCAGGAATGGTTAAAGCCGGAGCCGAAACGGCAATGATGTGCGGTGCTG ACCACGATACCTGTCAGGCAATTATTGACGTGACAAGTAAGATTCAATTTGGTTGTGAAGCCGTCGCGCTGGCACTGGAT GTTTTCCAGATTGGCCGTGCTTTTATGGCGACGAGAGGTTTATCTGGCGCAGCTGCAAAAGTGCTTGACTCCGGTTTTGG CGAGGAAGTGGTTGAGCGTATGGTAGGTGCAGGGGAAGCAGAAATAGAGGAGTTGGCTGAAAAGTTTGGCGAAGAAGTGA GCGAAAGTTTTTCCAAACAATTTGAGCCGCTTGAACGTGAAATGGCTATGGCGAATGAGATGGCAGAGGAGGCTGCCGAG TTTTCTCGTAACGTAGAAAATAATATGACGCGAAGCGCGGGAAAAAGCTTTACGAAAGAGGGGGGTGAAAGCCATGGCAAA agaagcggcaaaaggagccctggaaaaatgtgtgcaagaaggtggaaagttcctgttaaaaaattccgtaataaagttc TCTTCAATATGTTCAAAAAATCCTGTATGCCTTACTGAGGGATTGTTCATTTAAAGGCTTACAGGCTATCAGATGTGCA accgagggcgccagtcagatgaatactggcatggttaacacagaaaaagcgaagatcgaaaagaaaatagagcaattaat TTTATAAGGGGACGGGTGCCGCGCTTAGAGATGTATTAGATACCATTGATCACTATAGTAGCGTTCAGGCGAGAATAGCT **GGCTATCGCGCTTAA**

FIG. 22D

sseD

FIG. 22E

sseE

FIG. 22F

sseF

FIG. 22G

sseG

FIG. 22H

SECA

ATGAAAAAAGACCCGACCCTACAACAGGCACATGACACGATGCGGTTTTTCCGGCGTGGCGGCTCGCTGCGTATGTTGTT GGATGACGATGTTACACAGCCGCTTAATACTCTGTATCGCTATGCCACGCAGCTTATGGAGGTAAAAGAATTCGCCGGCG CAGCGCGACTTTTTCAATTGCTGACGATATATGATGCCTGGTCATTTGACTACTGGTTTCGGTTAGGGGAATGCTGCCAG GCTCAAAAACATTGGGGGGGAAGCGATATACGCTTATGGACGCGCGGCACAAATTAAGATTGATGCGCCGCAGGCGCCATG GGCCGCAGCGGAATGCTATCTCGCGTGTGATAACGTCTGTTATGCAATCAAAGCGTTAAAGGCCGTGGTGCGTATTTGCG GCCAGGTCAGTGAACATCAAATTCTCCGACAGCGTGCAGAAAAGATGTTACAGCAACTTTCTGACAGGAGCTAA

FIG. 221

88C

FIG. 22J

ssaD

ATGGCATATCTCATGGTTAATCCAAAGAGTTCCTGGAAAATACGTTTTTTAGGTCACGTTTTACAAGGCCGGGAAGTATG GCTGAATGAAGGTAACCTGTCACTGGGGGAGAAGGGATGCGATATTTGTATTCCGCTGGCTATAAATGAAAAAATTATTC TGAGAGAACAGGCAGATAGTTTATTTGTTGATGCCGGGAAAGCCAGAGTTAGAGTTAATGGCCGCAGATTTAATCCAAAT AAGCCGCTACCATCCAGTGGGGTTTTGCAGGTTGCGGGAGTGGCTATCGCGTTTGGTAAACAGGATTGTGAACTTGCTGA TGTTAAGTATTAGTGGTCAGCCTGAAACGGTAAATGACTTACCTTTGCGGGTTAAGTTTTTATTAGACAAAAGCAATATT CATTATGTGCGGGCGCAATGGAAAGAAGATGGCAGCCTGCAGTTGTCCGGTTATTGCTCGTCAAGCGAACAGATGCAAAA GGTGAGAGCGACTCTCGAATCATGGGGGGTCATGTATCGGGATGGTGTAATCTGTGATGACTTATTGGTACGAGAAGTGC AGGATGTTTTGATAAAAATGGGTTACCCGCATGCTGAAGTATCCAGCGAAGGGCCGGGGAGCGTGTTAATTCATGATGAT ATACAAATGGATCAGCAATGCCCAAGGTTCAACCATTACTTGCAGATATTCCCGGGTTATTGCACTGGCAGATTAGTCA CTCTCATCAGTCTCAGGGGGATGATATTATTTCTGCGATAATAGAGAACGGTTTAGTGGGGGCTTGTCAATGTTAGCCCAA TGCGGCGCTCTTTTGTTATCAGTGGTGTACTGGATGAATCTCATCAACGCATTTTGCAAGAAACGTTAGCAGCATTAAAG GGCTGGCTTTGTACAGAGTCGCCATGGTAATTACTTATTACTGACGAATAAAGAGCGTTTACGTGTAGGGGCATTGTTAC CCAATGGGGGAGAAATTGTCCATCTGAGTGCCGATGTGGTAACGATTAAACATTATGATACTTTGATTAACTATCCATTA GATTTTAAGTGA

FIG. 22K

SSAE

FIG. 22L

BBAG

FIG. 22M

seal

ATGTTTGCGGCGTTAACCATAGCCTGATTTCCCAGGTACATGCGATGTTACCAGCGCTAACGGTTATTGTTCCGGATAA
AAAATTACAGTTGGTATGTCTGGCATTATTGTTGCGGGTTTAAATGAGCCGCTAAAAGCCGCGAAAATTTTATCGGATA
TAGATTTGCCAGAGGCTATGGCGCTCCGTCTTTATTTCCTGCACCAAATGAGGGGTTTGAAAATTGA

FIG. 22N

ssaI

FIG. 220

ssaJ

"Attenuated Salmonella SP12 Mutants as Antigen Carriers"
By: Michael Hensel, et al.
Divisional of U.S.S.N. 09/763,620, filed January 23, 2004
Atty, Docket No. ICI 104 DIV

28/31

FIG. 22P

ssrA

AATTATTTGGCTGCTATCTGTGCTTACCGCAGCTTATATATCAATGGTTCAGAAACGGCAGCATATAATAGAGGATTTAT CCGTTCTATCCGAGATGAATATTGTACTAAGCAATCAACGGTTTGAAGAAGCTGAACGTGACGCTAAAAATTTAATGTAT TTGCACGCCGACGCTAAACGGAGAGAAGCACCGTCTCTTTCTGCAGTCCTCTGATATCGATGAAAATAGCTTTCGTCGCG ATAGTTTTATTCTTAATCATAAAAATGAGATTTCGTTATTATCTACTGATAACCCTTCAGATTATTCAACTCTACAGCCT TTAACGCGAAAAAGCTTTCCTTTATACCCAACCCATGCCGGGTTTTACTGGAGTGAACCAGAATACATAAACGGCAAAGG ATGGCACGCTTCCGTTGCGGTTGCCGATCAGCAAQGCGTATTTTTTGAGGTGACGGTTAAACTTCCCGATCTCATTACTA AGAGCCACCTGCCATTAGATGATAGTATTCGAGTATGGCTGGATCAAAACAACCACTTATTGCCGTTTTCATACATCCCG AACCTTGCATGGCCCGGATGGAGTCTGGTTACGCTGTACCCATACGGTAATCTACATAATCGCATCTTAAAAATTATCC TTCAACAAATCCCCTTTACATTAACAGCATTGGTGTTGATGACGTCGGCTTTTTGCTGGTTACTACATCGCTCACTGGCC GGATGAATTAGATAGTATTGCCGGTGCTTTTAACCAACTGCTTGATACTCTACAAGTCCAATACGACAATCTGGAAAAACA ACGGTAATAAGTCATGAGTTACGTACTCCGATGAATGGCGTACTCGGTGCAATTGAATTATTACAAACCACCCCTTTAAA CATAGAGCAACAAGGATTAGCTGATACCGCCAGAAATTGTACACTGTCTTTGTTAGCTATTATTAATAATCTGCTGGATT TTTCACGCATCGAGTCTGGTCATTTCACATTACATATGGAAGAAACAGCGTTACTGCCGTTACTGGACCAGGCAATGCAA ACCATCCAGGGGCCAGCGCAAAGCAAAAAACTGTCATTACGTACTTTTGTCGGTCAACATGTCCCTCTCTATTTTCATAC CGACAGTATCCGTTTACGGCAAATTTTGGTTAATTTACTCGGGAACGCGGTAAAATTTACCGGAAACCGGAGGGATACGTC TGACGGTCAAGCGTCATGAGGAACAATTAATATTTCTGGTTAGCGATAGCGGTAAAGGGATTGAAATACAGCAGCAGTCT TAAAATGATGGGCGGTAATCTGACACTAAAAAGTGTCCCCGGGGTTGGAACCTGTGTCTCGCTAGTATTACCCTTACAAG CGCGGTGAACCACCACCACCACAAAATGCGCTTCTCAACGCAGAGCTTTTGTATTTCTCCGGAAAACTCTACGACCTGGC TTGATGATGCCGATATTAATCGGGATATCATCGGCAAAATGCTTGTCAGCCTGGGCCAACACGTCACTATTGCCGCCAGT TATTGAATGTGTACGATTATGGCATGATGAGCCGAATAATTTAGATCCTGACTGCATGTTTGTGGCACTATCCGCTAGCG TAGCGACAGAAGATATTCATCGTTGTAAAAAAATGGGATTCATCATTACAATACAAAACCAGTGACATTGGCTACCTTA GCTCGCTACATCAGTATTGCCGCAGAATACCAACTTTTACGAAATATAGAGCTACAGGAGCAGGATCCGAGTCGCTGCTC ATGCCGTATCGGCTGGAGAAAAAATCGATCAGTTAATTCACACATTAAAAGGCTGTTTAGGTCAAATAGGGCAGACTGAA TTGGTATGCTATGTCATAGACATTGAGAATCGCGTAAAAATGGGGAAAATCATCGCGCTGGAGGAACTAACCGACTTACG CCAGAAAATACGTATGATCTTCAAAAACTACACCATTACTTAA

FIG. 22Q

ssrB

FIG. 23A

Ssel

mmikkkaafseyrdleqsymqlinhclkkphqirakvsqqlaeraespknsretesilhnlfpqgvagvnqbabkdlkkiv slfkqlevrlkqlnaqapveipsgktkr

FIG. 23B

SseB

MSSGNILWGSQNPIVFKNSFGVSNADTGSQDDLSQQNPFAEGYGVLLILLMVIQAIANNKFIEVQKNAERARNTQEKSNE MDEVIAKAAKGDAKTKEEVPEDVIKYMRDNGILIDGMTIDDYMAKYGDHGKLDKGGLQAIKAALDNDANRNTDLMSQGQI TIQKMSQELNAVLTQLTGLISKWGEISSMIAQKTYS

FIG. 23C

SseC

MNRIHSNSDSAAGVTALTHHHLSNVSCVSSGSLGKRQHRVNSTFGDGNAACLLSGKISLQEASNALKQLLDAVPGNHKRP SLPDFLQTNPAVLSMMMTSLILNVFGNNAQSLCQQLERATEVQNALRNKQVKEYQEQIQKAIEQEDKARKAGIFGAIFDW ITGIFETVIGALKVVEGFLSGNPAEMASGVAYMAAGCAGMVKAGAETAMMCGADHDTCQAIIDVTSKIQFGCEAVALALD VFQIGRAFMATRGLSGAAAKVLDSGFGEEVVERMVGAGEAEIEELAEKFGEEVSESFSKQFEPLEREMAMANEMABEAAE FSRNVENNMTRSAGKSFTKEGVKAMAKEAAKEALEKCVQEGGKFLLKKFRNKVLFNMFKKILYALLRDCSFKGLQAIRCA TEGASQMNTGMVNTEKAKIEKKIEQLITQQRFLDFIMQQTENQKKIEQKRLEELYKGTGAALRDVLDTIDHYSSVQARIA GYRA

FIG. 23D

SseD

MEASNVALVLPAPSLLTPSSTPSPSGEGMGTESMLLLFDDIWMKLMELAKKLRDIMRSYNVEKQRLAWELQVNVLQTQMK TIDEAFRASMITAGGAMLSGVLTIGLGAVGGETGLIAGQAVGHTAGGVMGLGAGVAQRQSDQDKAIADLQQNGAQSYNKS LTEIMEKATEIMQQIIGVGSSLVTVLAEILRALTR

FIG. 23E

See

MVQBIEQWLRRHQVFTEPAYLGETAILLGQQFILSPYLVIYRIEAKEMIICEFRRLTPGQPRPQQLFHLLGLLRGIFVHH PQLTCLKMLIITDVLDEKKAMLRRKLLRILTVMGATFTQLDGDNWTVLSAEHLIQRRF

FIG. 23F

SseF

MKIHIPSAASNIVDGNSPPSDIQAKEVSFPPPEIPAPGTPAAPVLLTPEQIRQQRDYAIHFMQYTIRALGATVVFGLSVA AAVISGGAGLPIAILAGAALVIAIGDACCAYHNYQSICQQKEPLQTASDSVALVVSALALKCGASLNCANTLANCLSLLI RSGIAISMLVLPLQFPLPAAENIAASLDMGSVITSVSLTAIGAVLDYCLARPSGDDQENSVDELHADPSVLLAEQMAALC QSATTPAPALMDSSDHTSRGEP

FIG. 23G

See

MKPVSPNAQVGGQRPVNAPEESPPCPSLPHPETNMESGRIGPQQGKERVLAGLAKRVIECFPKEIFSWQTVILGGQILCC SAGIALTVLSGGGAPLVALAGIGLAIAIADVACLIYHHKHHLPMAHDSIGNAVFYIANCFANQRKSMAIAKAVSLGGRLA LTATVMTHSYWSGSLGLQPHLLERLNDITYGLMSFTRFGMDGMAMTGMQVSSPLYRLLAQVTPEQRAPE

FIG. 23H

SECA

MKKDPTLQQAHDTMRFFRRGGSLRMLLDDDVTQPLNTLYRYATQLMEVKEFAGAARLFQLLTIYDAWSFDYWFRLGECCQ AQKHWGEAIYAYGRAAQIKIDAPQAPWAAAECYLACDNVCYAIKALKAVVRICGEVSEHQILRQRAEKMLQQLSDRS

FIG. 231

SECB

MMMKEDQKNKIPEDILKQLLSVDPETVYASGYASWQEGDYSRAVIDFSWLVMAQPWSWRAHIALAGTWMMLKEYTTAINF YGHALMLDASHPEPVYQTGVCLKMMGEPGLAREAFQTAIKMSYADASWSEIRQNAQIMVDTLIA

FIG. 23J

SsaD

MAYLMVNPKSSWKIRFLGHVLQGREVWLNEGNLSLGEKGCDICIPLAINEKIILREQADSLFVDAGKARVRVNGRRFNPN KPLPSSGVLQVAGVAIAFGKQDCELADYQIPVSRSGYWWLAGVFLIFIGGMGVLLSISGQPETVNDLPLRVKFLLDKSNI HYVRAQWKEDGSLQLSGYCSSSEQMQKVRATLESWGVMYRDGVICDDLLVREVQDVLIKMGYPHAEVSSEGPGSVLIHDD IQMDQQWRKVQPLLADIPGLLHWQISHSHQSQGDDIISAIIENGLVGLVNVSPMRRSFVISGVLDESHQRILQETLAALK KKDPALSLIYQDIAPSHDESKYLPAPVAGFVQSRHGNYLLLTNKERLRVGALLPNGGEIVHLSADVVTIKHYDTLINYPL DPK

FIG. 23K

SsaE

MTTLTRLEDLLLHSREEAKGIILQLRAARKQLEENNGKLQDPQQYQQNTLLLEAIEQAENIINIIYYRYHNSALVVSEQE

FIG. 23L

Ssa

mdiaqlvdmlshmahqagqaindkmngndllnpesmikaqpalqqystfinyesslikmikdmlsgiiaki

FIG. 23M

SsaH

mpagvnhslisqvhamlpaltvivpdkklqlvclalllaglneplkaakilsdidlpeamalrllfpapnegfen

FIG. 23N

SsaI

MSVVPVSTQSYVKSSAEPSQEQINFFEQLLKDEASTSNASALLPQVMLTRQMDYMQLTVGVDYLARISGAASQALNKLDN

FIG. 230

SsaJ

MKVHRIVFLTVLTFFLTACDVDLYRSLPEDEANOMLALLMOHHIDAEKKQEEDGVTLRVEQSQFINAVELLRLNGYPHRQ FTTADKMFPANQLVVSPQEEQQKINFLKEQRIEGMLSQMEGVINAKVTIALPTYDEGSNASPSSVAVFIKYSPQVNMEAP RVKIKDLIEMSIPGLQYSKISILMQPAEFRMVADVPARQTFWIMDVINANKGKVVKWLMKYPYPLMLSLTGLLLGVGILI GYFCLRRRF

FIG. 23P

Sark

MNLLNLKNTLQTSLVIRLTFLFLLTTIIIWLLSVLTAAYISMVQKRQHIIEDLSVLSEMNIVLSNQRFEEAERDAKNLMY QCSLATEIHHNDIFPEVSRHLSVGPSNCTPTLNGEKHRLFLQSSDIDENSFRRDSFILNHKNEISLLSTDNPSDYSTLQP LTRKSFPLYPTHAGFYWSEPEYINGKGWHASVAVADQQGVFFEVTVKLPDLITKSHLPLDDSIRVWLDQNNHLLPFSYIP QKIRTQLENVTLHDGWQQIPGFLILRTTLHGPGWSLVTLYPYGNLHNRILKIILQQIPFTLTALVLMTSAFCWLLHRSLA KPLWRFVDVINKTATAFLSTLPAQHLDELDSIAGAFNQLLDTLQVQYDNLENKVAERTQALNEAKKRAERANKRKSIHL TVISHELRTPMNGVLGAIELLQTTPLNIEQQGLADTARNCTLSLLAIINNLLDFSRIESGHFTLHMEETALLPLLDQAMQ TIQGPAQSKKLSLRTFVGQHVPLYFHTDSIRLGQILVNLLGNAVKFTETGGIRLTVKRHEEQLIFLVSDSGKGIEIQQQS QIFTAFYQADTNSQGTGIGLTIASSLAKMMGGNLTLKSVPGVGTCVSLVLPLQEYQPPQPIKGTLSAFFCLHRQLACMGI RGBPPHQQNALLMABLLYFSGKLYDLAQQLILCTPNMPVINNLLPPWQLQILLVDDADINRDIIGKMLVSLGQHVTIAAS SNEALTLSQQQRFDLVLIDIRMPBIDGIECVRLWHDEPNNLDPDCMFVALSASVATEDIHRCKKNGIHHYITKPVTLATL ARYISIAAEYQLLRNIELQEQDPSRCSALLATDDMVINSKIFQSLDLLLADIENAVSAGEKIDQLIHTLKGCLGQIGQTE LVCYVIDIENRVKMGKIIALEELTDLRQKIRMIFKNYTIT

FIG. 23Q

SerE

MKEYKILLVDDHEIIINGIMNALLPWPHPKIVEHVKNGLEVYNACCAYEPDILILDLSLPGINGLDIIPQLHQRWPAMNI LVYTAYQQEYMTIKTLAAGANGYVLKSSSQVLLAALQTVAVNKRYIDPTLNREAILAELNADTTNHQLLTLRERQVLKL IDEGYTNHGISEKLHISIKTVETHRMNMRKLQVHKVTELLNCARRMRLIEY

FIG. 24A

Promoter A2

GCTTCCCTCCAGTTGCCTGTTGCAAAATCTTTGGCACTTGATCACTATCGCAGTACATATAGTTTCATCAGAAGATTAAT
CGATGGTGTTATCATTAGGAAGATAAATTTCTTCATATATAACCCAGTCGATGACTACAATTACTTTTTAATAAGATGGC
GATGTAAAAACATCGTAACAGTTTATTTAATAAATAATTTTTCCAAATTGTAAGTTTTTTATGTCAATGCTGAAAATGTAAT
TGTGAATTTATCGGAAAATCCGAATGATAGAATCGCCTGTGACAAGGTATATGTAGACAGCATCCTGATATTGTACAAGA
AGAGATAGTCGAAATAAATGTGAATCAGGCTTTTTACGGATGTGGTTGTGAGCGAATTTGATAGAAAC

FIG. 24B

Promoter B